Пифагорейская теория чисел
Нечетные числа делятся на 3 общих класса: несоставные, составные и несоставные - составные. Несоставные числа - это такие числа, которые не имеют других делителей, кроме себя самого и единицы. Это числа 3,5,7,11,13,17 и т.д. Составные числа - это числа, делимые не только сами на себя, но и на некоторые другие числа. Такими числами являются те из нечетных чисел, которые не входят в группу несоставных. Это числа 9,15,21,25,27,33,39 и т.д. Несоставные-составные числа - эта числа, не имеющие общего делителя, хотя каждое из них делимо. Если взять два числа и обнаружить, что они не имеют общего делителя, такие числа можно назвать несоставными-составными числами. Например, числа 9 и 25. 9 делимо на 3, а 25 на 5, но ни одно из них не делимо на делитель другого, они не имеют общего делителя. Несоставными-составными они называются потому, что каждое из них имеет индивидуальный делитель, а поскольку эти числа не имеют общего делителя, они называются несоставными. Таким образом, несоставные-составные числа обнаруживаются только попарно друг с другом.
Для определения составных от несоставных нечетных чисел был придуман Эратосфеном1 математический прием. Суть этого приема состоит в следующем: все нечетные числа упорядочиваются по величине, как показано на второй внизу таблице, названной «нечетные числа». Из таблицы видно, что каждое третье число, начиная с 3, делится на 3, каждое пятое - на 5, седьмое - на 7 и т.д. до бесконечности. Этот процесс отсеивает простые числа, то есть те, которые не имеют других делителей, кроме себя и единицы.
Здесь 5 умножается сперва на 3, затем на 5, затем на 7 и т.д.
Ряд нечетных чисел просеянных через 5 |
15 |
Здесь 3 умножается на 3, затем на 5, затем на 7 и т.д. | |||||||||||||
Ряд нечетных чисел, просеянных через 3 |
9 |
15 |
21 | ||||||||||
Нечетные числа |
1 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
Простые числа |
5 |
7 |
11 |
13 |
17 |
19 |
23 |