Упражнения

1. Пользуясь логическим квадратом, установите логическое значение:

1.1. А, I, О, если Е – истинно.

Для решения данных задач воспользуемся "логическим квадратом", по углам которого располагаются суждения А, Е, I, O, а его стороны и диагонали являются символическим выражением основных логических отношений между суждениями.

Для суждений, находящихся в отношении подчинения, имеет значение условие истинности: если Е – истинно, то О – истинно. Суждения Е, I и суждения А, О связаны отношением противоречия. Согласно законам логики два противоречивых суждения не могут быть одновременно ни истинными, ни ложными. Значит если Е – истинно, то I – ложно, а также если О – истинно, то А – ложно.

Ответ: если Е – истинно, то А – ложно, I – ложно, О – истинно.

1.2. А, Е, I, если O – истинно.

Снова для решения задачи применим "логический квадрат". Так как суждения О и А связаны отношением противоречия то если О – истинно, то А – ложно. Если А – ложно, то I может быть как истинным, так и ложным, так как для суждений находящихся в отношении подчинения действует отношение истинности, если бы А было бы истинно, то мы точно могли бы предполагать, что I тоже истинно, но в нашем случае получается, что I может принять одно из двух значений: истинна или ложь. Раз А – ложно, то Е так же может принять одно из двух значений то ли ложь, то ли истинна. Так как согласно отношению контрарности которым суждения А и Е связаны они могут быть оба ложные, то ли одно из них может быть ложным, а одно истинным и точно не могут быть оба истинными. Поэтому для данного задания есть два варианта ответа:

Ответ 1: если О – истинно, то А – ложно, I – истинно, то Е – ложно.

Ответ 2: если О – истинно, то А – ложно, I – ложно, то Е – истинно.

1.3. А, Е, О, если I – ложно.

Так как суждения I и Е связаны отношением противоречия то если I – ложно, то Е – истинно. Суждения Е и О связаны отношением подчинения то если Е – истинно, то О – истинно. Суждения А и О связаны отношением противоречия, значит если О – истинно, то А – ложно.

Ответ: если I – ложно, Е – истинно, А – ложно, О – истинно.

2. Определите распределенность терминов в следующих суждениях:

2.1. Некоторые выпускники вузов работают в банках.

2.7. Некоторые автомобили являются дизельными.

Суждение I

Данное суждение является частноутвердительным (I). По структуре: "Некоторые S есть Р". "Существуют такие х, которые обладают свойством Р" Для того чтобы установить распределенность наших суждений воспользуемся круговыми схемами: Субъект S и предикат Р суждения I – не распределены, т.к в их содержании имеется лишь часть общих признаков, а значит их объемы лишь пересекаются.

2.2. Ни один вид спорта не является легким.

Суждение Е

Наше суждение является обшеотрицательным (Е). По структуре: "Ни одно S не-есть Р" "Ни одно х не обладает свойством Р". Субъект S и предикат Р суждения Е – распределены, т.к в их содержании отсутствуют какие-либо общие признаки (они не сравнимы), а объемы полностью исключают друг друга.

2.3. Все химические элементы обладают атомным весом.

2.5. Всякий человек в душе – ребенок.

2.6. Все диалоги Платона – плоды философских размышлений.

Суждение А

Данные суждения является общеутвердительными (А). По структуре: "Все S есть Р". "Всякий х обладает свойством Р". Субъект S суждения А распределен, т.к. понятие S полностью подчинено по содержанию и включено по объему в понятие Р.

2.4. Некоторые постройки не являются современными.

Суждение О

Наше суждение является частноотрицательным (О). По структуре: "Некоторые S не-есть Р". "Существуют такие х, которые не обладают свойством Р". Субъект S суждения О – не распределен, т.к. значительная часть его содержания отличается от содержания понятия Р, который является распределенным.