Современная технология познания мира эвристика и методология науки
При исследовании бета-распада в 1934 г. Паули был вынужден для спасения закона сохранения энергии ввести гипотетическую частицу «нейтрино», которую экспериментально обнаружить удалось много позднее. И в данном случае в программу исследований Паули не входил поиск такой частицы, как нейтрино.
Флеминг увидел, что микроорганизмы не растут вблизи пенициллина, и открыл первый антибиотик. Его заслуга здесь в том, что он смог увидеть то новое, чего специально не искал.
Таким образом, надо быть Архимедом, чтобы выскочить из ванной с криком «Эврика» и открыть закон действия сил на тело, погруженное в жидкость; надо быть Галилеем, чтобы при наблюдении раскачивающейся лампы в соборе в Пизе озариться интуицией и сформулировать закон колебаний маятника; надо быть Ньютоном, чтобы при виде падающего яблока утвердиться в законе всемирного тяготения; надо быть Гальвани, чтобы от единичного случая сокращения лапки препарированной лягушки при ее контакте с металлическим телом прийти к идее нового электрохимического источника тока; надо быть Майером, чтобы при наблюдении изменения цвета венозной крови в тропиках (во время его путешествия на корабле) прийти к всеобщему закону сохранения и превращения энергии; надо быть Кекуле, чтобы, увидев во сне свернувшуюся змею, прийти к открытию строения молекулы бензола; нужно быть Менделеевым, чтобы при систематизации материала во время подготовки учебника «Основы химии» прийти к формулировке периодического закона химических элементов; надо быть Пуанкаре, чтобы после чашки кофе и бессонницы прийти к открытию класса «автоморфных функций»; нужно быть Флемингом, чтобы, увидев задержку роста культуры микроорганизмов, прийти к открытию антибиотика пенициллина - и т.д., пока не перечислим имена всех великих первооткрывателей.
В связи с вопросом о соотношении случайности и необходимости при совершении принципиально новых открытий известный американский кардиолог Дж. Лара заметил: «Чаще всего удачу исследователя приписывают случаю или ситуации, чем уму. Отчасти это происходит от того, что не все можно объяснить словами, и когда сделавший открытие ученый не способен объяснить, как он сделал открытие, то его ошибочно считают просто удачливым. На самом же деле открытие почти никогда не является удачей, случайностью потому что те исследователи, которые делают одно открытие, обычно делают еще одно, два и более открытий. Очевидно, главным требованием для исследователя является определенное сомнение в авторитетах и установленных доктринах. Многие не способны к подобному восстанию против установившихся истин»[84].
Кроме того, нередки случаи, когда даже при наличии рабочей гипотезы ее подтверждение происходит благодаря случаю. Так, в 1927 г. К. Девиссон и Л. Джермер обнаружили дифракцию электронов, т.е. подтвердили гипотезу де Бройля о волновой природе электронов, создав дифракционную решетку на монокристаллах никеля. Эти монокристаллы ученые получили благодаря тому, что у них случайно разбилась азотная ловушка и окислилась никелевая пластинка, восстанавливая которую ученые неожиданно увидели крупные монокристаллы никеля (см. об этом, например (Овчинников, 1972, с. 24-25]).
В 1965 г. А. Пензиас и Р. Вилсон зарегистрировали микроволновым приемником постоянный «паразитный» фон. В начале они думали, что причиной является голубиное гнездо на антенне, но, когда они удалили голубей с гнездом, фон сохранился. Так было обнаружено предсказанное Г. Гамовым реликтовое излучение, которое образовалось во время зарождения Вселенной. Обнаружение этого излучения принесло названным экспериментаторам Нобелевскую премию по физике.